
Bayesian approach to cluster expansions

Tim Mueller and Gerbrand Ceder*
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 13-5056, Cambridge, Massachusetts 02139, USA

�Received 30 December 2008; revised manuscript received 17 April 2009; published 2 July 2009�

Cluster expansions have proven to be a valuable tool in alloy theory and other problems in materials science
but the generation of cluster expansions can be a computationally expensive and time-consuming process. We
present a Bayesian framework for developing cluster expansions that explicitly incorporates physical insight
into the fitting procedure. We demonstrate how existing methods fit within this framework and use the frame-
work to develop methods that significantly improve the predictive power of cluster expansions for a given
training set size. The key to the methods is to apply physical insight and cross validation to develop physically
meaningful prior probability distributions for the cluster expansion coefficients. We use the Bayesian approach
to develop an efficient method for generating cluster expansions for low-symmetry systems such as surfaces
and nanoparticles.
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I. INTRODUCTION

Some properties of crystalline materials can be modeled
as a function of variables assigned to a fixed set of sites. For
example, magnetic energy can be expressed as a function of
the spin states of atoms at a given set of sites1 and in systems
exhibiting substitutional disorder the energy of an arrange-
ment of atoms can be modeled as a function of variables that
indicate which species �or vacancy� occupies each site.2 Of-
ten the exact function of site variables that produces the
property value is unknown and must be parameterized. Such
estimations may be accomplished through the use of cluster
expansions.3

In a cluster expansion, the function that produces the
property value is expanded as a linear combination of basis
functions known as cluster functions.3 Most often these clus-
ter functions are products of single-site descriptors and their
expansion coefficient represents an interaction between the
sites in the cluster. The coefficients of the expansion are
typically estimated from a combination of physical insight
and training data. The resulting cluster expansion is capable
of calculating property values very quickly, because it is a
simple analytical expression, and accurately because an arbi-
trarily large number of basis functions may be included in
the expansion.

The speed and accuracy of the cluster expansion have
made it a popular tool in materials science. The Ising model,
a simple cluster expansion, is commonly used to study mag-
netic properties.4 For systems of substitutional disorder, clus-
ter expansion Hamiltonians have been widely used to iden-
tify ground states,5–12 calculate phase diagrams,5–9 and study
ordering.10–13 In addition, cluster expansions have been used
to model kinetic activation energies,14 tensor properties,15

band gaps,16 orientations of complex ions,17 amino acid se-
quences in proteins,18 and configurational electronic
entropy.19

The challenge in working with cluster expansions is that a
new set of coefficients must be estimated for each system.
Generating the required training data can be computationally
expensive and it can be difficult to determine how accurately
a given cluster expansion predicts a property value. For low-

symmetry systems, such as nanoparticles, the number of
symmetrically distinct cluster functions that must be in-
cluded can be large and estimating such a large number of
coefficient values typically requires a large set of training
data. Compounding the problem, it is often computationally
expensive to generate each training data point for low-
symmetry systems. The result is that the generation of cluster
expansions for low-symmetry systems can be prohibitively
expensive.

In this paper we address the above problems by treating
the estimation of cluster expansion coefficients as an exercise
in statistical function learning. By applying Bayes’
theorem,20 we develop a framework for using physical in-
sights to generate cluster expansion coefficients and demon-
strate how existing methods for generating cluster expan-
sions fit within the framework. We use our framework to
develop methods for estimating cluster expansion coeffi-
cients and demonstrate that on a set of test systems the meth-
ods outperform several common methods. Finally, we will
demonstrate that our framework may be used to develop
cluster expansions for nanoparticles and other low-symmetry
systems with a high level of accuracy.

II. CLUSTER EXPANSION OVERVIEW

We will briefly review the mathematical foundation of the
cluster expansion, basing the review on the derivation by
Sanchez et al.3 The notation introduced in this section will be
used throughout the paper.

In a cluster expansion, the value of a property is repre-
sented as a function of variables assigned to a set of fixed
sites. The variables assigned to a given site represent the
state of the site. For example, a site state might be the mag-
netic spin associated with a site or the chemical species
present at a site. For clarity, in this paper we will only con-
sider cases in which there is one variable per site, although
extending to multiple variables is straightforward. We will
denote the site variable for the jth site by sj and the set of all
such site variables by s�. At each site, a single-variable site
basis of functions is defined. We will use �b,j to represent
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the bth basis function for the jth site. The tensor product of
all such site bases creates a complete multivariable basis. An
extensive material property, F, can be written as a linear
combination of these basis functions,

F�s�� = �
b�

Vb��
j

�bj,j
�sj� , �1�

where bj, the jth element of b� , is the index of the basis
function to be used at site j. The sum is over all possible sets

b� . The coefficients for this expansion, Vb�, are referred to as
effective cluster interactions �ECIs�. The basis function
�
j

�bj,j
�sj� is known as a cluster function and will be denoted

by

�b��s�� = �
j

�bj,j
�sj� . �2�

The number of distinct ECI can be reduced by exploiting
symmetry. If two cluster functions are symmetrically equiva-
lent to each other, their corresponding ECI must be equal.
Equation �1� can thus be rewritten as

F�s�� = �
�

V� �
b���

�b��s�� , �3�

where the set � represents an orbit of symmetrically equiva-
lent cluster functions and the outer sum is over all such or-
bits.

The value of an extensive property may be normalized per
unit of material. For such a property, Eq. �4� can be rewritten
as

�F�s��� = �
�

V�m���b��s����, �4�

where �F�s��� is the average value of the property per formula
unit and ���� is the average value of cluster functions in
orbit �. The multiplicity, m�, is an integer that represents the
number of cluster functions in orbit � per formula unit. If all
the ECI were known, Eq. �4� could be used to exactly calcu-
late the normalized property value for a given material state.

For an infinite crystal, Eq. �4� is an infinite sum and can-
not be evaluated. This problem can be addressed through
truncation of the cluster expansion. The first step in the trun-
cation procedure is to define the single-site bases so that one
of the single-site functions is the constant, 1. We will always
use the index “0” for the constant function, so that �0,j al-
ways equals 1. Equation �2� can therefore be written as

�b��s�� = �
j�bj�0

�bj,j
�sj� . �5�

For some cluster functions, Eq. �5� is a product over a finite
number of site functions. A commonly applied insight is that
the more site functions in a cluster function and the further
the distance between the corresponding sites, the smaller the
ECI should be.3 Often, all but a finite number of cluster
function orbits will have ECI that are negligible and may be
estimated to be zero. This approximation allows for the ex-
pansion to be reduced to a finite number of nonzero terms
with a typically small loss of accuracy. In the next section we

will show how this insight can be more explicitly included in
the ECI learning process.

III. BAYESIAN CLUSTER EXPANSION

To construct a truncated cluster expansion, the objective is

to find a set of ECI values, V� , that best reproduces the prop-
erty values. We refer to these values as the optimal ECI. In
this work, we seek to find ECI values that are most likely to
be optimal given a set of training data. We express the train-
ing data as a vector of output values, y�, and matrix of input
values, X. The ith element of y� is the property value for the
ith element in the training set and the elements of X are given
by Xi�=m����s�i���. To ensure X has a finite number of col-
umns, cluster functions for which the ECI are likely to be
negligible are excluded. The probability density for the opti-
mal ECI, given the training data, is expressed as the condi-
tional probability distribution P�v� �X ,y��, where the variable v�
is defined over possible ECI values.

The key to our approach is to use Bayes’ theorem, in
conjunction with physical insight, to find the ECI that maxi-
mize P�v� �X ,y��. Bayes’ theorem, described in more detail in
the Appendix, tells us

P�v� �X,y�� =
P�y��v� ,X�P�v� �X�

P�y��X�
. �6�

The key to the application of Bayes’ theorem is the establish-
ment of the prior probability distribution, P�v� �X�. The prior
probability distribution represents an educated guess of the
likelihood of ECI values before we have calculated property
values for the training data. Through the prior probability
distribution we may incorporate physical insight into the na-
ture of the ECI. For example, if we are considering forma-
tion energies, we may have the a priori belief that ECI on the
order of meV are more likely than those on the order of keV,
given typical values of formation energy.21 We consider here
three examples of such prior insights:

Insight 1: property predictions should be close to those
predicted by some simple model. For example, we might ex-
pect the energy of an alloy to be close to the weighted aver-
age of the energies of the pure substances, or we might ex-
pect the energy to be close to that predicted by an empirical
potential model. We treat such a model the mean of the
prior probability distribution of property values. We define
y�=y−y�, where y is the property value, y� is the expected
value of y according to the simple model, and y� is the
unknown difference. We can calculate y by using the simple
model to calculate y� and a cluster expansion to calculate y�.
By definition the prior expected value for y� is zero and
therefore the prior expected value for each ECI in the cluster
expansion of y� must also be zero. For this reason, it is
convenient to develop a cluster expansion for the trans-
formed property values, y�, in place of y. For simplicity,
from this point forward we will assume that the variable y�
represents the transformed property values, and consequently
the mean of the prior distribution for the ECI is zero.

Insight 2: the greater the number of sites in the cluster,
and the greater the distance between sites, the smaller the
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ECI should be. This insight is commonly used to truncate the
cluster expansion but it may also be applied to cluster func-
tions included in the fit. We define a prior probability distri-

bution for V�, the �th element of V� with mean zero and
variance ��

2 . The variance is the expected squared value of
the ECI and in the limit ��

2 →0 the cluster function is effec-
tively excluded from the expansion. The probability distribu-
tion with zero mean and finite variance that maintains the
maximum information entropy �i.e., makes the fewest as-
sumptions about the data� is the Gaussian,22 making it a rea-
sonable choice for our prior distribution. Using Gaussian dis-
tributions, the prior probability P�v� �X� can be expressed as

P�v� �X� 	 �
�

e−v�
2/2��

2
, �7�

where the product is over all included cluster orbits. To build
in the expectation that ECI are smaller for larger clusters, ��

2

should be a decreasing function of the number of sites in a
cluster and the distance between sites.

Insight 3: ECI for similar cluster functions should have
similar values. Some clusters of sites that are not symmetri-
cally equivalent may however be similar to each other. For
example, a nearest-neighbor pair of sites two layers below a
crystal surface is symmetrically distinct from to a nearest-
neighbor pair of sites three layers below the surface but both
clusters have the same number of sites, the same distance
between sites, and the same nearest-neighbor environments.
Previous cluster expansions for surfaces have not made use
of such similarities.23–27 The belief that similar clusters
should have ECI that are close to each other can be ex-
pressed in the prior distribution by setting

P�v� �X� 	 �
�,
��

e−�v� − v
�2/2��

2
, �8�

where the product is over all pairs of ECI for similar cluster
functions. The variance ��


2 indicates the degree of expected
similarity between the two ECI. In the limit ��
→0, the
ECI for � and 
 are forced to be identical and in the limit
��
→�, the ECI are completely decoupled.

In the Appendix we show how the above insights can be
combined with Bayes’ theorem to derive a maximum likeli-

hood estimate for V� ,

V̂� = �XTWX + ��−1XTWy� , �9�

where V̂� are the estimated ECI, W is a diagonal weight ma-
trix, and � is a matrix with elements given by

��� =
�2

��
2 + �


�
��

�2

��

2 ,

��
 = �
� =
− �2

��

2 , �10�

where �2 is an unknown constant. We can rewrite Eq. �9� by
defining the weighted input matrix and weighted output vec-
tor,

XW = W1/2X ,

y�W = W1/2y� �11�

to arrive at

V̂� = �XW
T XW + ��−1XW

T y�W. �12�

Because of the relationship to Tikhonov28 regularization, �
will be referred to as the regularization matrix. Without this
matrix, Eq. �12� is just the solution to a standard linear least-
squares fit. The regularization matrix is equivalent to using
the following prior probability distribution:

P�v� �X� 	 e−v�T�v�/2, �13�

which is a multivariate normal distribution with covariance
matrix �−1. Thus we can see that � may be thought of as the
inverse of the covariance matrix for the prior probability dis-
tribution of the ECI.

For convenience, we define the orbit regularization
parameter �= �2

��
2 and coupled regularization parameter

�
=
�= �2

��

2 . The matrix � can be written entirely in terms

of these parameters. To better understand the regularization
matrix, it is instructive to consider what happens in the limits
of the parameters:

�1� �→�. V� is forced to be zero and effectively elimi-
nated from the fit.

�2� �→0 and �
→0. All values for V� are considered
equally likely.

�3� �
→0. There is no expectation that V� and V
 are
close to one another.

�4� �
→�. V� and V
 are forced to have the same value.
Values for the regularization parameters � and �
 may

be assigned manually, based on physical expectations. How-
ever, it is generally more convenient to have a method to
automatically determine reasonable values for � and �
. In
the next sections, we will provide examples of different au-
tomated methods for assigning values to � and �
. These
methods will then be evaluated against sets of test data to
determine which produce the best estimates for the ECI.

A. Methods for generating ��

If we restrict �
=0 and �� �0,�	, then assigning val-
ues to the regularization parameters is equivalent to cluster
selection, in which certain cluster functions are selected to be
included in the cluster expansion and a least-squares fit is
used to estimate the values of the ECI for those cluster func-
tions. The choice of which clusters should be included in the
cluster expansion is commonly accomplished using a cross-
validation �CV� method.29 In cross-validation methods, a
subset of the training data is set aside and the ECI are esti-
mated using the remaining training data. The estimated ECI
are used to predict values for the training data that were set
aside and then the process is repeated with another subset of
training data set aside. After repeating this process many
times, the root-mean-square error of all predictions, known
as the cross-validation score, provides an estimate of the pre-
diction error of the cluster expansion. In the context of clus-
ter selection, the cross-validation score is calculated for a
number of different sets of included cluster functions and the
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set of cluster functions that has the lowest cross-validation
score is selected.

The regularization parameters need not be restricted to
�
=0 and �� �0,�	 but they may still be chosen using
cross validation. Directly finding the combination of regular-
ization parameters that minimizes the cross-validation score
is one option but this option ignores the physical insights that
one may have, such as insights 2 and 3 described above.
Alternatively, we may use regularization functions to gener-
ate the regularization parameters in a way that is consistent
with our physical insights. We define regularization functions
as functions that generate values for the regularization pa-
rameters � and �
 given a set of generating parameters
which we will label �i. The optimal values for the generating
parameters will be determined using cross validation and
these values will be used with the regularization function to
generate values for � and �
. The extra level of abstraction
provided by the regularization functions allows us to incor-
porate physical insights into the process of generating regu-
larization parameters or ignore our physical insights if we so
choose.

We will now describe five sample regularization functions
that generate the regularization parameter �. For each of
these functions we will set 0�, the regularization variable for
the constant cluster function, equal to zero for simplicity.
However this choice is not necessary in general.

�a� Cluster selection. This regularization function corre-
sponds to the cluster selection method described above.
There is one binary generating parameter �� for each orbit
and the regularization function is

� = 
 0��� = 0

���� = 1� .

In addition, we enforce a rule that if a cluster is included in
the fit, all subclusters must be included as well, consistent
with the rules proposed by Zarkevich and Johnson.30 It was
found that this constraint significantly improves the quality
of the fit.

�b� Single width. This function is equivalent to saying that
the expected magnitudes of all ECI are the same. This mag-
nitude is determined by one non-negative continuous input
parameter � and the regularization function is �=�.

�c� Independent widths. In this regularization function, the
prior expectations for the magnitude of the ECI are all inde-
pendent of each other and the expected magnitudes may take
on any non-negative values. There is one non-negative con-
tinuous input parameter �� for each orbit and the regulariza-
tion function is �=��.

�d� Inverse cluster density. Up to this point, we have not
explicitly considered the physical expectation that for clus-
ters with a larger number of sites, or clusters with larger
distance between sites, the corresponding ECI should be
small. To derive a regularization function for this expecta-
tion, we consider here the case in which the site variables
may take on discrete values. We will also assume that the
basis has been constructed so that the cluster functions are
orthonormal, where orthonormality is defined as

∀ j,

�
i=1

Nj

�a,j�sj,i��b,j�sj,i�

Nj
= �ab, �14�

where Nj is the number of possible values for the site vari-
able for the jth site and sj,i is the ith value for the jth site
variable.

The insight that the material property may be adequately
represented by a finite set of small, compact clusters may be
mathematically expressed as an expectation that the cluster
expansion may converge. Here we define convergence by

∀� � 0, ∃ �ncut,rcut	 such that

�E
 �
b��Bcut

Vb��b��s���2�� � � , �15�

where the function E� · � is the expectation over all structures
and Bcut is the set of all cluster functions dependent on clus-
ters of no more than ncut sites that are a distance of no more
than rcut from each other. Once again we use � · � to represent
normalization per formula unit. Combining Eqs. �14� and
�15� with the fact that E�Vb��=0, we see that the convergence
condition can be written as

∀� � 0, ∃ �ncut,rcut	 such that � �
b��Bcut

�b�
2� � � , �16�

where �b�
2 is the variance of the prior distribution for Vb�.

The condition in Eq. �16� can be met in the limit of
ncut→� and rcut→� if �b�

2 decreases more rapidly than the
number of clusters in Bcut increases. As rcut→� the number
of clusters in Bcut per formula unit is approximately propor-
tional to ��1rcut��2ncut, where �1 is a scale factor and �2 de-
pends on the number of periodic dimensions. Therefore, the
condition in Eq. �16� can be met if, for a cluster with n sites
and a maximum distance of r between sites,

��n,r� = ��1r�−�2n �17�

for some non-negative �1 and �2. More generally, we use the
following regularization function, in which all parameters
are non-negative:

��n,r� = �1��2r + �3 + 1��4n+�5. �18�

For some parameter values, the prior distribution will not-
converge as defined by Eq. �16�. However, for cluster expan-
sions that do converge, some set of parameters can be used in
Eq. �18� to create a convergent prior distribution.

�e� All pair distances. We might want to consider not just
the maximum distance between sites but all distances be-
tween all sites in the cluster. Below is an example of a func-
tion that considers all sites between all clusters and may still
converge
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� = ��3, b� � �, �b� � = 1


 �
i�bi�0

�i �
j�bj�0,j�i

�1 + �1ri,j��1/�2�−�2, b� � �, �b� � � 1 � , �19�

where i and j are sites, �b� � is the number of nonzero entries in

b� , and ri,j is the distance between sites i and j. The non-
negative parameters �i are site dependent and all symmetri-
cally equivalent sites share the same �i. The parameter �3 is
used to treat point clusters specially, although we note that if
this parameter is omitted then �=�i for point clusters, cre-
ating a similar regularization function with fewer parameters.

B. Methods for generating ���

In this section we will consider regularization functions
that generate �
, which determines the degree to which we
expect the ECI for different cluster functions to be similar.
These functions will be constructed in a manner similar to
how we constructed the regularization functions for �: we
will define parameterized functions and use cross validation
to determine the parameters.

Methods for generating �
 may be closely related to the
geometry of a particular problem. Many regularization func-
tions for �
 will depend on the concept of “congruent” clus-
ter functions, which we define as cluster functions for which
the nonconstant site functions �and underlying sites� are re-
lated by an isometry. In congruent clusters, there must be a
way to map the sites of one cluster onto the sites of another
that preserves all distances and angles between sites. For
example, when considering a binary cluster expansion of the
surface of an FCC material, all nearest-neighbor pair inter-
actions are congruent to each other, although they are not
necessarily symmetrically equivalent. Further examples are
given in Fig. 1. We will use the symbol � to represent con-

gruency. In general, each of the regularization functions de-
scribed in this section is a method for determining to what
extent congruent cluster functions should be “coupled,” or
how close we expect their ECI to be, to each other.

We will consider six example regularization functions for
�
. In each of these methods, �
=0 for clusters which are
not congruent. It is assumed that the regularization function
for � is defined such that if ��
 then �=
. To separate
the concept of similarity from the expected magnitude of the
ECI, each regularization function for �
 will first generate a
similarity factor, �s, which is related to �
 as follows:

�
 = �s� = �s
. �20�

�a� No coupling. This regularization function, �s=�
=0,
has been widely �implicitly� used in cluster expansions. It is
appropriate for cases in which any two cluster functions are
either symmetrically equivalent or completely distinct.

�b� Coarse graining. This regularization function should
be used when all congruent cluster functions are to be treated
as symmetrically equivalent. The function is defined by
�s=� for congruent cluster functions and for all others
�s=0. For example, this approach is similar to the one used
in Ref. 23.

�c� Coarse graining except surface. This is the same as
coarse graining, except cluster functions that are dependent
on surface sites are not coupled to congruent cluster func-
tions. The intuition behind the use of this regularization func-
tion is that even if congruent bulk clusters may be treated as
symmetrically equivalent, it makes less sense to treat a clus-
ter function dependent on surface sites as equivalent to a
cluster function dependent on only nonsurface sites. The
function is defined by �s=� for congruent cluster functions
that do not include surface sites and �s=0 for all others. An
approach similar to this one was used in Ref. 25.

�d� Uniform coupling. This function is different from the
coarse graining approaches in that the ECI for congruent
cluster functions are expected to be close to each other but
not necessarily identical. There is one input parameter, �,
which is allowed to have any non-negative value. For con-
gruent cluster functions, �s=�, and for all others �s=0.

�e� Similarity to bulk. If there is no significant surface
reconstruction, the cluster functions in orbit � near a surface
are congruent to the cluster functions in some orbit �Bulk,
defined in an infinite unbroken crystal. In this method, all
congruent cluster functions are indirectly coupled through
their similarity to the corresponding bulk cluster function. To
accomplish this, we assume that V� is normally distributed
around V�Bulk

V� � N�V�Bulk
,��,Bulk

2 � , �21�

where N�V�Bulk
,��,Bulk

2 � is a normal distribution with mean
V�Bulk

and variance ��,Bulk
2 . There are a number of ways to

FIG. 1. �Color online� An illustration of symmetric and congru-
ent clusters near a surface on a square lattice. The cluster of sites
marked with “a” is symmetrically equivalent to the cluster marked
with “b” but it is not equivalent to the cluster marked with “c.”
Clusters “a” and “c” are congruent, as are “b” and “c.” Clusters “d”
and “e” are also congruent but not symmetrically equivalent. Clus-
ters “a,” “b,” and “c” are neither congruent nor symmetrically
equivalent to clusters “d” and “e.”
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generate ��,Bulk and we will use the following:

��,Bulk
2 = ae−br�, �22�

where the parameters a and b are scale factors and r� is the
shortest distance between a site in the cluster � and a site on
the surface. With this form, the further a cluster is from the
surface, the closer its ECI should be to the bulk ECI.

Now consider another cluster function from orbit �� that
is congruent to the cluster functions in �. Because these clus-
ter functions are congruent, they must be coupled to the same
orbit of bulk cluster functions �i.e., �Bulk� =�Bulk�. For ex-
ample, in an fcc crystal � might be a nearest-neighbor pair
two layers from the surface and �� might be a nearest-
neighbor pair three layers from the surface. From Eq. �21�,
we get

V� − V�� � N�0,��,Bulk
2 + ���,Bulk

2 � . �23�

Thus, in general the regularization function becomes

�s =
�1

e−�2r� + e−�2r

�24�

when ��
 and �s=0 otherwise.
�f� Local environment similarity. This is the most compli-

cated approach, in which the similarity between any two
congruent cluster functions is determined as a function of the
similarity of their local environments. As usual, we define
�s=0 for any two cluster functions that are not congruent.
For congruent clusters, �
 is determined by a measure of
similarity between the local environments of cluster func-
tions in � and 
. In this paper, we measure the general simi-
larity by considering each transformation T that maps a clus-
ter function in � to a cluster function in 
, excluding
constant site functions. We define the set MT,� as the set of
indices of sites that are mapped by T onto sites with identical
allowed states and single-site bases, including constant site
functions. Likewise, MT,
 is defined for the inverse transfor-
mation. We define the overlap factor O�,
 by

O�,
 = max
T � �

i�MT,�

w�ri,�� + �
i�MT,


w�ri,
�

�
i

w�ri,�� + �
i

w�ri,
� � ,

w�ri,�� = �1 + �1�−�2ri,�, �25�

where ri,� is the minimum distance between site i �or a pe-
riodic image of site i� and a nonconstant site in the cluster
function to which the transform was applied. The overlap
factor is defined so that if � and 
 are symmetrically equiva-
lent, O�,
=1. If, on the other hand, there is no overlap
among sites between the original and transformed crystal,
O�,
=0. From the overlap factor, we define the similarity
factor as

�s =
O�,


1/�3

1 − O�,

1/�3

. �26�

IV. APPLICATIONS

To evaluate the various methods for generating �, test
data were generated for three different binary material sys-
tems: Si-Ge, Ag-Au, and Pb-Ir. For the diamond-cubic Si-Ge
system, energies were calculated for all structures with up to
14 atoms per unit cell, for a total of 9631 structures. For the
fcc Ag-Au and Pb-Ir systems, energies were calculated for all
structures with up to nine atoms per unit cell, for a total of
1135 structures each. To calculate the energies for Si-Ge, the
Tersoff31 potential was used. For Ag-Au and Pb-Ir, we used a
Sutton and Chen32 embedded atom potential,

E = �ij1

2�
i

�
j�i

�aij

rij
�nij

− �
i

ci��
j�i

�aij

rij
�mj� , �27�

with the following combination rules:

aij =
aii + ajj

2
,

nij =
nii + njj

2
,

�ij = ��ii� j j . �28�

The lattice parameters for Au and Ag are very close to each
other, resulting in little relaxation of atoms from ideal fcc
lattice positions and generally well-converged cluster expan-
sions. The lattice parameter for Pb is 29% larger than the
lattice parameter for Ir and there was frequently significant
relaxation for this system. No attempt was made to remove
structures in which the initial and final atomic positions were
significantly different. Hence the Pb-Ir data set is a good test
of how well the different methods are able to fit a poorly
converging cluster expansion. In contrast, the Si-Ge struc-
tures retained the diamond-cubic form and yielded cluster
expansions with the lowest average prediction error.

To evaluate the methods, cluster expansions were gener-
ated for training sets of 15, 30, 45, 60, and 75 training struc-
tures. Four different sets of candidate clusters were gener-
ated. Each includes all two-site, three-site, and four-site
cluster functions up to a specified cutoff. The four cutoffs
considered are first nearest neighbor, second nearest neigh-
bor, third nearest neighbor, and fourth nearest neighbor. The
predictive power of the cluster expansion was tested on the
complete set of sample structures.

Two different cross-validation methods were considered
for parameter selection: leave-one-out cross validation
�LOOCV� and generalized cross validation �GCV�. Leave-
one-out cross validation is the process of leaving one sample
out of the training set, training the cluster expansion on the
remaining samples, and measuring the predictive error on the
sample left out. The LOO CV score is the mean-squared
predictive error over all excluded samples and is given by

LOOCV = �
i

�ŷW,CV,i − yW,i�2, �29�

where ŷW,CV,i is the value for the ith training sample as pre-
dicted by a cluster expansion fit to the remaining samples,
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and yW,i is the ith element of y�W,i. The sum is over all train-
ing samples.

The evaluation of Eq. �29� can be sped up by reducing the
size of the matrix that needs to be inverted for each excluded
sample. Using the Sherman-Morrison-Woodbury formula,33

it can be shown that the prediction error for a given set of
excluded samples is given by

ŷ�W,CV,out − y�W,out = �I − XW,out
T�−1XW,out�−1�ŷ�W,out − y�W,out� ,

�30�

where XW,out are the rows of XW corresponding to the ex-
cluded samples, y�W,out is the equivalent for the output values,
ŷ�W,out are the predicted values for the excluded samples using
a full fit, and ŷ�W,CV,out are the predicted values for the ex-
cluded samples using a cluster expansion fit to only the ex-
cluded samples. The matrix � is given by

� = �XW
TXW + ��−1. �31�

It can be shown that the leave-one-out cross-validation score
is dependent on the basis used to represent the input data X.
A widely used alternative that does not have this dependency
is known as GCV.34 It is equivalent to the leave-one-out
cross-validation score for a system in which the input data
have been rotated to a standard form. For systems in which
the prior is Gaussian, the generalized cross-validation score
is given by

GCV =
�N�ŷ�T − y�T�2

Tr�I − XW�−1XW
T�

, �32�

where N is the number of training samples and � is given by
Eq. �31�. In addition to being basis independent, the GCV
score has the advantage of being faster to compute than the
LOO CV score.

Regularization matrices were generated by finding param-
eters that yield low cross-validation scores for the regulariza-
tion function. For cluster selection in cluster expansions in
which there were fewer than 30 candidate clusters, the set of
clusters that minimized the cross-validation score was found
by an exhaustive search of all possible sets of clusters to
include in the fit. For cluster expansions with more than 30
candidate structures, simulated annealing was used to search
for the ground state.

For the inverse-density, pair-distances, and single-value
regularization functions, parameter selection was done in a
two-stage process. The first stage of the process was a grid
search for the locally minimum cross-validation score on a
logarithmic grid, in which neighboring grid points repre-
sented parameters that differed by a factor of 2. All param-
eters were initialized with a value of 1. The grid search was
ended when the improvement in the score between neighbor-
ing points was less than 0.1 meV. When the grid search was
completed, a conjugate gradient algorithm was used to more
finely resolve the local minimum. The conjugate gradient
algorithm was stopped when the gradient of the score with
respect to the natural log of the parameter values was less
than 0.01 meV.

For the independent regularization function, the same
method was used as the inverse-density, pair-distances, and
single-value regularization functions if there were fewer than
six parameters. For situations in which there were six or
more parameters, the multidimensional grid search rapidly
becomes computationally expensive. In such situations, the
grid search was skipped and only the conjugate gradient step
was used.

The comparison of the mean-squared predictive error for
the different candidate cluster sets, training set sizes, cross-
validation techniques, and data sets can be seen in Table I. In
each data set, the generalized cross-validation score gives on
average slightly better results that leave-one-out cross vali-
dation, especially for the noisy Pb-Ir data set. This may be
due in part to less numerical noise when calculating the GCV
score. Because this method is also faster than leave-one-out
cross validation, it was used for the remainder of the results.

A. Evaluating methods for generating ��

The average prediction errors and cross-validation scores
of the five different methods for generating � are shown in
Fig. 2. The inverse-density and pair-distances regularization
functions consistently outperform the rest and are signifi-
cantly better for the more challenging systems. The differ-
ence between the inverse-density and pair-distances regular-
ization functions is minor, likely due to the fact that they
have similar forms and the same number of parameters.

The single-value regularization function generally per-
forms poorly but this poor performance is somewhat re-
flected in a high cross-validation score. The reason for this
high score is likely due to the fact that the prior distribution
in which all ECI are expected to have similar values is physi-
cally unrealistic.

The independent regularization function and cluster selec-
tion typically have the largest number of independent param-
eters and consistently produce the lowest cross-validation
scores. However, the actual prediction error diverges signifi-
cantly from the cross-validation score as the number of can-
didate clusters, and hence the number of parameters, in-
creases. This is almost certainly due to over fitting of the
cross-validation score; as the number of degrees of freedom
increases, the cross-validation score becomes a poor estimate
of prediction error. Thus parameters that produce cluster ex-
pansions with low cross-validation scores do not reliably
produce cluster expansions with low prediction error.

B. Evaluating methods for generating ���

To evaluate methods for generating �
, cluster expan-
sions were generated for a 201-atom cuboctahedral Ag-Au
nanoparticles. A test set of 10 000 randomly chosen struc-
tures was generated and energies were calculated using the
embedded atom method. Generalized cross validation was
used to find the optimal set of parameters. Four candidate
cluster sets were generated containing all three-site clusters
up to the second nearest neighbor and pairs up to the first,
second, third, and fourth nearest neighbors. For the coarse-
graining methods, �s=107 was used instead of �s=� for nu-
merical reasons. Two different methods for generating �
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were used: the inverse-density regularization function and a
variation in the pair-distances regularization function in
which � is given by

� = 
 �
i�bi�0

�3 �
j�bj�0,j�i

�1 + �1ri,j��1/�2�−�2, b� � � .

�33�

The advantage to Eq. �33� over Eq. �19� is that it replaces the
individual point parameters �i with a single parameter �3.
For a nanoparticle, in which there are a large number of
symmetrically distinct sites, this replacement significantly re-
duces the total number of parameters.

It was found that both the inverse-density regularization
function and modified pair-distances regularization functions
gave very similar results. The mean-squared prediction error
for different combinations of candidate cluster sets, training
set sizes, and regularization functions are given in Table II.
In general the best cluster expansions are those generated
with the largest set of candidate clusters and largest training
sets. In the limit of the largest training set and the largest
candidate cluster set considered, the best regularization func-
tion performs about four to five times better than coarse
graining and one and a half to two times as well as the
cluster expansion in which similarity between clusters is ig-
nored. On average, the best coupled regularization functions
produce better cluster expansions with a training set of 30
structures than the uncoupled regularization function pro-
duces with the largest training set evaluated, containing 75
structures.

Coarse graining, even when surface clusters are left out,
generally produces cluster expansions with the highest pre-
diction error. The prediction error does not decrease signifi-
cantly when the size of the training set is increased because
there is no way to recover the error introduced into the clus-
ter expansion by the unrealistically restrictive prior. The
uniform-coupling regularization function performs the best
on average, although the regularization function based on
local-environment similarity is most frequently the best. The
reason for this difference is that the uniform-coupling regu-
larization function tends to do much better with small train-
ing set sizes. The success of the uniform-coupling regular-
ization function for small training sets is likely due to its
simplicity; the single parameter reduces the problem of over-
fitting the cross-validation score. For larger training sets, ad-
ditional degrees of freedom are not as problematic and the
more complicated regularization functions generally start to
perform better. However the importance of the prior distri-
bution diminishes with increased training set size, so the
uniform-coupling regularization function never falls far be-
hind the more complicated regularization functions.

V. RELATED METHODS

It is useful to compare the Bayesian approach to other
methods that have been used to generate cluster expansions.
The method of cluster selection is widely used, the use of
cross validation with cluster selection was first proposed by
Van de Walle and Ceder.29 The method of independent values
is closely related to that proposed by Diaz-Ortiz and
co-workers.35,36 The results in this paper suggest that low

TABLE I. �Color online� The root-mean-squared prediction error for different combinations of candidate
cluster sets, training set sizes, cross-validation techniques, and data sets. The highlighted cells indicate the
cross-validation method that produces the better result.

Ag-Au Pb-Ir Si-GeTraining
set size

Neighbor beyond
which CE is cut off GCV LOO CV GCV LOO CV GCV LOO CV
1st nearest neighbor 0.00782 0.00779 0.23749 0.24615 0.00347 0.00340
2nd nearest neighbor 0.00507 0.00426 0.32017 0.36454 0.00314 0.00323
3rd nearest neighbor 0.00338 0.00440 0.30208 0.41684 0.00267 0.00261

15

4th nearest neighbor 0.00393 0.00366 0.27123 0.35780 0.00238 0.00236
1st nearest neighbor 0.00723 0.00723 0.22381 0.22677 0.00369 0.00373
2nd nearest neighbor 0.00219 0.00220 0.14714 0.14886 0.00256 0.00266
3rd nearest neighbor 0.00243 0.00250 0.20600 0.22829 0.00222 0.00224

30

4th nearest neighbor 0.00317 0.00291 0.29556 0.26109 0.00233 0.00230
1st nearest neighbor 0.00709 0.00714 0.21872 0.22082 0.00352 0.00354
2nd nearest neighbor 0.00189 0.00193 0.12810 0.13159 0.00250 0.00255
3rd nearest neighbor 0.00158 0.00191 0.18587 0.17511 0.00206 0.00204

45

4th nearest neighbor 0.00238 0.00234 0.19524 0.22796 0.00237 0.00224
1st nearest neighbor 0.00686 0.00689 0.21002 0.21156 0.00357 0.00358
2nd nearest neighbor 0.00183 0.00184 0.12387 0.12540 0.00234 0.00231
3rd nearest neighbor 0.00109 0.00112 0.13336 0.13274 0.00189 0.00188

60

4th nearest neighbor 0.00176 0.00181 0.16000 0.16836 0.00193 0.00201
1st nearest neighbor 0.00670 0.00681 0.20764 0.20875 0.00370 0.00371
2nd nearest neighbor 0.00182 0.00181 0.12380 0.12337 0.00226 0.00226
3rd nearest neighbor 0.00102 0.00106 0.12690 0.12565 0.00192 0.00193

75

4th nearest neighbor 0.00123 0.00124 0.15601 0.15968 0.00177 0.00182
Average 0.00352 0.00354 0.19865 0.21307 0.00261 0.00262
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leave-one-out cross-validation scores frequently obtained us-
ing these methods may not be reliable indicators of low pre-
diction error, especially if the candidate cluster set is large.

It has been suggested that forms of leave-many-out cross
validation, in which multiple elements are left out of the
training set at once, may be used in place of leave-one-out
cross validation.37 There is evidence that for cluster selection
in systems with only a few significant ECI, leave-many-out
cross validation can significantly reduce prediction error
compared to leave-one out cross validation but the difference
between the two approaches rapidly diminishes as the num-
ber of significant ECI increases.38 In addition, leave-many-
out cross validation can be an unreliable indicator of predic-
tion error for cluster selection.38 In contrast, by reducing the
number of degrees of freedom in the model selection proce-
dure, we are able to obtain accurate estimates of prediction

error for cluster expansions with a large number of signifi-
cant ECI.

The single-width regularization function is equivalent to
ridge regression, a common statistical tool.39 Jansen and
Popa40 have recently used a related method to calculate the
lateral interaction energies of adsorbates on a surface. Their
method is equivalent to using a single-width regularization
function with a fixed small value for �. They use this ap-
proach in conjunction with prior probabilities assigned to
sets of included cluster functions to perform a Bayesian ver-
sion of cluster selection, an approach that is proposed as an
alternative to the use of cross validation.

The mixed-basis cluster expansion,37,41 a method devel-
oped to address the need to include a large number of pair
terms in some cluster expansions, combines concepts from
cluster selection and the inverse-density regularization func-

FIG. 2. �Color online� The average leave-one-out cross-validation scores �dashed lines� and root-mean-square prediction error over the
entire test set �solid lines� for the Si-Ge �top row�, Ag-Au �middle row�, and Pb-Ir �bottom� data sets as a function of the cutoff radius of the
candidate cluster set. Cluster sets with cutoff radii at the first, second, third, and fourth nearest neighbor were evaluated.
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tion. The mixed-basis cluster expansion is equivalent to us-
ing the following regularization function for pair clusters
only:

��r�� = �1

m�r�
�2

��
��

�r��
�2

m��
�2 , �34�

where m� is the multiplicity of cluster orbit �, r� is the
distance between the two sites, and �1 and �2 are free pa-
rameters. The sum is over all candidate cluster orbits. All
point clusters are included without regularization and clus-
ters of more than two sites are selected via cluster selection.
To limit the degrees of freedom of the mixed-basis cluster
expansion, constraints may be applied to the number of mul-
tisite cluster functions with nonzero ECI allowed in the
expansion.37 In contrast, the inverse-density regularization
function applies no such limit but reduces the number of
degrees of freedom through parameterization while simulta-
neously encouraging smaller ECI for clusters with a larger
number of sites.

The idea of treating surface interactions as a perturbation
of bulk interactions has been applied by Müller et al.,42 in-
spired by the insight of Drautz et al.43 In their approach,
surface energies are treated as perturbation of bulk energies
and a cluster expansion is developed for the difference be-
tween the surface energies and bulk energies. In our frame-
work, this is equivalent to treating the bulk energies as the
mean of the prior distribution for surface energies. The clus-
ter expansion of the difference between surface and bulk
energies is equivalent to cluster expanding y� as described in
the discussion of insight #1. Our approach takes the addi-
tional step of asserting that the prior probability of small
perturbations is higher than that of large perturbations. In
addition, we introduce the ability to couple the ECI for con-
gruent clusters, as in the “similarity to bulk” regularization
function, which allows the insight of Drautz et al. to be
applied without ever needing to calculate a bulk cluster ex-
pansion. Using the perturbation method without regulariza-
tion, Drautz et al.43 found that about 100 distinct significant
ECI were required to calculate surface energies for a single
binary �100� surface. Determining values for these ECI re-
quired a training set of 160 72-atom slabs. It is our belief that
the methods described in this paper will significantly reduce

TABLE II. �Color online� The mean-squared prediction error in meV/atom for different combinations of
candidate cluster sets, training set sizes, and �
 regularization functions. The highlighted cells indicate the
best regularization function for each row. The inverse-density regularization function was used to generate �

and it was found that the modified pair-distances regularization function in Eq. �33� produced similar results.

αβλ generator

Pair cluster
cutoff

Training set
size

No
coupling

Coarse-
grained

Coarse-
grained
except
surface

Uniform
coupling

Similarity
to bulk

Local
similarity

15 2.289 3.329 3.241 2.106 2.127 1.918
30 1.558 2.967 3.135 1.260 1.536 1.285
45 1.500 2.973 2.984 1.200 1.202 1.197
60 1.536 2.884 2.852 1.191 1.191 1.194

1st nearest
neighbor

75 1.416 2.875 2.844 1.163 1.166 1.161
1st nearest neighbor average 1.660 3.006 3.011 1.384 1.444 1.351

15 2.841 2.865 3.123 2.520 2.659 2.575
30 1.124 2.799 3.198 0.741 0.803 0.746
45 0.924 2.746 3.016 0.680 0.702 0.653
60 0.850 2.746 2.756 0.667 0.715 0.646

2nd nearest
neighbor

75 0.697 2.733 4.193 0.639 0.643 0.631
2nd nearest neighbor average 1.287 2.778 3.257 1.049 1.105 1.050

15 1.849 2.848 3.103 1.162 1.139 1.844
30 1.291 2.748 3.125 0.833 0.842 0.824
45 1.096 2.751 3.447 0.660 0.688 0.654
60 0.879 2.739 2.746 0.627 0.624 0.601

3rd nearest
neighbor

75 0.953 2.730 2.713 0.640 0.641 0.668
3rd nearest neighbor average 1.214 2.763 3.027 0.784 0.787 0.918

15 2.521 3.233 3.195 2.020 2.075 3.178
30 1.792 2.789 3.089 0.801 0.837 0.785
45 1.474 2.759 3.157 0.658 0.693 0.643
60 1.158 2.734 2.780 0.640 0.625 0.612

4th nearest
neighbor

75 1.161 2.744 2.681 0.585 0.611 0.563
4th nearest neighbor average 1.621 2.852 2.980 0.941 0.968 1.157

Overall average 1.446 2.850 3.069 1.040 1.076 1.119
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the size of the required training set for such problems.

VI. DISCUSSION

We have presented a Bayesian framework for training
cluster expansions. Several existing methods can be ex-
pressed in the context of this framework and within this
framework we have proposed methods for training cluster
expansions that consistently produce cluster expansions with
low prediction error. The keys to generating a cluster expan-
sion with low prediction error are as follows:

Use Bayes’ theorem, or equivalently, regularization. The
use of Gaussian prior distributions as described in this paper
is mathematically equivalent to Tikhonov28 regularization,
which improves the convergence of the cluster expansion
with respect to training set size. One of the benefits of using
regularization is that an arbitrarily large number of ECI may
be determined for a given training set, allowing efficient gen-
eration of cluster expansions that might have low symmetry,
include complex interactions or include significant long-
range interactions.

Use a physically meaningful prior distribution. The more
physically meaningful the prior distribution is, the more rap-
idly the cluster expansion will converge. Methods such as
cluster selection, the independent regularization function, or
the single-value regularization function do not incorporate
much physical insight into the prior distribution, and as a
result they converge relatively slowly. On the other hand, the
prior distribution can be thought of as a “soft” constraint: a
good prior distribution will lead to rapid convergence,
whereas a bad prior distribution will still lead to convergence
but at a slower pace �i.e., more training data will be re-
quired�.

Use cross validation to determine the prior distribution.
Cross validation has been widely used in cluster expansions
since initially proposed by Van de Walle and Ceder29 and it
can be incorporated into the Bayesian framework by using
parameterized functions to generate prior distributions. We
have found that generalized cross validation works about as
well as leave-one-out cross validation with the advantage of
being faster. Forms of leave-many-out cross validation may
also be considered.37

Use a regularization function with few parameters. The
use of regularization functions with a large number of de-
grees of freedom, such as cluster selection or the independent
regularization function, can lead to overfitting of the cross-
validation score. The result is that the cross-validation score
ceases to be a meaningful measure of true prediction error
and optimizing the cross-validation score does little to im-
prove the prediction error.

Regularized cluster expansions typically include more
cluster functions than those generated through cluster selec-
tion. Although this usually leads to more accurate cluster
expansions for a given training set size, there is a perfor-
mance penalty when using a cluster expansion with a large
number of nonzero ECI. This situation is easily remedied by
identifying the smallest ECI determined by the Bayesian ap-
proach and removing those clusters from the fit. This is an
artificial constraint that will most likely slightly increase the

prediction error for the cluster expansion but the benefit of
more rapid evaluation may be worth the tradeoff. It is also
important to note that no matter how many nonzero ECI are
included in the cluster expansion, it is always possible to
develop insight into the most dominant interactions by iden-
tifying the largest ECI. The values of the largest ECI will be
more meaningful for highly accurate cluster expansions,
which often require a large number of terms.

As researchers apply the cluster expansion approach to
increasingly complex systems, it is important to improve the
efficiency of cluster expansions and develop reliable metrics
of cluster expansion quality. The Bayesian approach, using
regularization functions with few parameters, addresses each
of these problems. This approach promises to make the gen-
eration of cluster expansions for low-symmetry systems such
as surfaces and nanoparticles feasible with a level of accu-
racy comparable to that of bulk cluster expansions. Using
this approach, researchers should be able to develop more
physically meaningful methods for generating prior distribu-
tions and further improve cluster expansion quality.
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APPENDIX: DERIVATION OF BAYESIAN CLUSTER
EXPANSION

The general application of Bayes’ theorem to function
learning is well known39 and here we derive the application
of Bayes’ theorem to the cluster expansion. We start by pro-
viding a brief introduction to Bayes’ theorem. The joint prob-
ability of two events, P�A ,B�, can be expressed as

P�A,B� = P�A�B�P�B� = P�B�A�P�A� , �A1�

where P�A �B� is the probability of A given B and P�B �A� is
similarly defined. For example, the probability that it is rain-
ing and I am carrying an umbrella is equal to the probability
that I am carrying an umbrella given that it is raining, times
the probability that it is raining. Rearranging Eq. �A1� gives
us Bayes’ theorem20

P�A�B� =
P�B�A�P�A�

P�B�
. �A2�

In terms of a cluster expansion, we are trying to maximize
P�v� �X ,y��. In the continuous limit, Bayes’ theorem tells us44

P�v� �X,y�� =
P�y��v� ,X�P�v� �X�

P�y��X�
. �A3�

The first term in the numerator on the right, P�y� �v� ,X�, is the
probability distribution of the training outputs, y�, given the
training inputs, X, and the optimal ECI. The second term in
the numerator on the right, P�v� �X�, is the prior distribution,
which represents a prior expectation for the values of the ECI
before the training outputs are generated. The denominator
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may be treated as a constant with respect to the ECI. From
Eq. �A3� and the fact that the natural log is a monotonically
increasing function, it follows that the ECI that maximize
P�v� �X ,y�� are given by

V̂� = arg min
v�

�− ln�P�y��v� ,X�� − ln�P�v� �X��� . �A4�

To find a closed-form solution for Eq. �A4�, we first derive
expressions for P�y� �v� ,X� and P�v� �X�.

To derive an expression for P�y� �v� ,X� we start with a
linear least-squares regression model, in which property val-
ues in the training set are assumed to be generated by an
optimal linear combination of included cluster functions plus
normally distributed random noise

y� = XV� + ẽ� , �A5�

where the ith element of the vector ẽ�, ẽi, is an independent
normally distributed random variable with mean 0 and stan-
dard deviation �i. The noise reflects the facts that if we are
not using the complete basis of cluster functions the cluster
expansion will generally not exactly reproduce the training
data. In addition, there will be noise if the generation of the
property values for the training data is not completely deter-
ministic. From Eq. �A5�, we get

P�y��v� ,X� 	 �
i

e−�yi − x�i · v��2/2�i
2
, �A6�

where x�i is the ith row of X and the product is over all
elements of the training set.

An expression for the prior distribution, P�v� �X�, can be
derived by combining Eqs. �7� and �8�

P�v� �X� 	 �
�

e−v�
2 /2��

2 �
�,
��

e−�v� − v
�2/2��

2

. �A7�

It is important to remember that this prior distribution as-
sumes that the training data have been transformed by sub-
tracting out the expected property value for each data point,
so that the prior expected value for each ECI is zero.

Combining Eqs. �A4�, �A6�, and �A7�, we get

V̂� = arg min
v�

�
i

�yi − x�i · v��2

2�i
2 + �

�

v�
2

2��
2 + �

�,
��

�v� − v
�2

2��

2 � .

�A8�

The values �i, introduced in Eq. �A5�, represent the magni-
tude of the random noise that differentiates the property val-
ues in the training set from the values predicted by the target
function. They are a metric of how well the target function
predicts property values and they are in general unknown
because we do not know the error introduced by truncating
the cluster expansion. However, for a truncated expansion
we may specify the relative values of �i by defining weights,
wi, for each structure in the training set

wi =
�2

�i
2 �A9�

for some unknown proportionality constant �2. The larger
the weight wi, the more accurately the truncated expansion
should predict the property value for the ith element of the
training set relative to the other elements in the training set.
Combining Eqs. �A8� and �A9�, and rearranging terms,
yields

V̂� = arg min
v�

�
i

wi�yi − x�i · v��2 + �
�
��2

��
2 + �


�
��

�2

��

2 �v�

2

− �
�

�

�
��

� �2

��

2 �v�v
� , �A10�

which can be written in matrix-vector notation,

V̂� = arg min
v��

��y� − Xv��TW�y� − Xv�� + v�T�v�� , �A11�

where W is a diagonal matrix in which Wii=wi and the ele-
ments of the matrix � are given by Eq. �10�. The minimum
in Eq. �A11� can be directly determined by taking the deriva-
tive with respect to v� , yielding Eq. �9�.
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